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As it appears in several editions of AISC “Steel Construction Manual”, a close encounter with 
warping constant (Cw) is unavoidable when dealing with buckling and/or torsion behavior of 
structural members.  Formulas for calculating warping constant for members with standard profile 

geometry are readily 
available from many 
references.  There 
should be no 
problem for most 
structural members 
with mono- or 
doubly- symmetric 
sections in general.  
For members with a 
cap channel over an 
I-beam (and 
collectively many 
other standard 
sections), a good 
summary of 
information for 
torsional properties 
can be found in 
“Torsional Section 
Properties for Steel 
Shapes”, Canadian 
Institute of Steel 
Construction.  The 
problem is how to 
calculate Cw for 
sections with non-
standard (or 
arbitrary) profile 
geometry.   

So far a “practical 
reference” does not 
appear to exist in 
the public domain 
for engineers to 
really tackle the Cw 
calculation for 
profiles having no 
axis of symmetry. 

Albeit there is no shortage of advisory materials on torsion theory but they were often accompanied 
by many not-so-user-friendly formulas found in many textbooks.  

This article serves only one purpose.  It is not about understanding the theory behind warping 
constant nor is it about deriving complicated equations for torsion or offering their closed-form 
solutions.  By being called a “practical reference” here, we mean a comprehensive numerical 
example that would:  
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(a) explicitly dissect all the numerical integration in steps and carry out the necessary calculations 
leading to Cw and  

(b) in the process, establish a standard solution procedure and methodology applicable to any thin-
walled open section.   

Our goal here is to 
give ourselves a 
“Homework 
Problem” that 
calculates the Cw 
value for a 
“composite 
profile”.  The 
profile is made 
from a W21X55 
shape with a 
C8X11.5 channel, 
which is attached 
off the web of W21 
at 3.5 inches below 
the W21 top flange 
extreme fiber.   

For easy reference, 
all the calculation 
(Calc) pages 
prepared manually 
for this homework 
problem are 
scanned in as part 
of this article.  It 
takes seventeen 
(17) steps to 
complete the task, 
hopefully without 
hiding much of the 
technical fine 
points.  
“Seventeen” is not 
a sacred number.  
This task can take a 
greater number of 
or fewer steps to 
suit our needs.  It 
all depends on (a) 

how familiar we are with the subject, (b) how we organize the presentation, and (c) how much 
detail we want to expose, add, hide or omit.   

Let us get started now:  Our example profile is taken after a real-life girder from a mill building.  It 
looks innocent and does not appear much different from some of the classic profiles that we are all 
familiar with: “a cap channel over an I-beam”, which exists in so many industrial facilities except 
that our channel is a few inches off from both (the major and minor) axes.   

We recommend that you now take a break from reading any further but skim through these Calc 
pages briefly to get some ideas, especially if you are just curious about why it takes so many steps 
to figure out a “simple” Cw constant for members with such “simple” profile geometry.   
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As we go through with steps (and pages) of the Calc in the ensuing paragraphs, some subject(s) that 
appear trivial or self-explanatory will be bypassed for obvious reasons.  Meanwhile we will highlight 
a few tips or traps here and there wherever appropriate.  Anyhow, if you are new to this attempt, 
please pay closer attention to the “Process” in problem solving techniques rather than in numerical 
details. 

Middle Line Profile Cw Model 

Our “Cw model” found on Calc page 1 resembles a typical plane frame model employed in regular 
structural analysis.  The so-called “middle line” suggests that all the framework linkages in the 
model would always traverse along the line of mid-thickness of each and every profile component 
regardless to how thick each may be.  Middle line model is an idealized skeleton profile.  It is 
nothing but a graphical description of the general element “geometry” and the element 
“connectivity”.   

For profiles with plain elements, their design is mostly controlled by “strength requirement”.  Many 
rolled shapes having simple flanges and/or webs fit in this category.  Constructing a middle line 
model for these profiles is straightforward as if drawing elements by connecting the dots.  Take a 
plain I-beam for instance, we would “idealize” it with nominal six (6) nodes to depict (or digitize) 
all the participating components, which include two (2) flange elements and one (1) web element.   

For profiles with much more complex geometry, their configuration can be dictated by “strength 
requirement” and/or “functionality”. But on occasions “detailing constraint” may play an 
important role as well.  Complex profile geometries are found regularly in cold-formed or built-up 
sections.  To facilitate fabrication, some of the elements are connected to one or more “adjacent 
element(s)” by welding or bolting.  Here is how detailing constraint comes into play: the 
connections are made at strategic points usually at or near element’s terminal ends or any interior 
point to suit the bolt gage dimensions, etc.  Therefore when identifying a “profile element”, it no 
longer applies to plain flanges and webs only.  In a broader sense it should also include composite 
web(s), attachment(s) connected (by welds or bolts) to other flange(s) and/or web(s).   

For any given profile, the value of its Cw remains the same whether we derived that value from 
complex or simple modeling.  If our goal is limited to only obtaining warping constant and nothing 
else, we should go for the simplest “model construct and there is no need to worry about “detailing 
constraints”.     

If our interested is not only the warping constant but also the state of stress of the profile then we 
must consider taking in pertinent “details” as part of our modeling strategy.  To authenticate a 
profile middle line model, it would be more persuasive if we had included additional nodes at 
strategic points, where detailing constraints play a part.  The implication of “details” is that we 
have to subdivide each affected elements into as many “sub-elements or segments” as required to 
cover all bases.  Don’t be too skimpy over this because adding a few extra nodes “before” is always 
much better than “after”.   

The “decision” of using extra/fewer nodes beyond “detailing constrains” can be influenced by other 
factors as well.  Let’s look at a “thrust-plated crane girder” (thinking beyond Cw) in that the top 
flange acts as a “flange” in resisting vertical loads.  The same flange can also ”act as web” when 
subjected to lateral loads.  This analogy applies to other elements in similar or in reverse logic.  Due 
to the double roles each element may play under different load natures, relying on results from 
using simpler model to justify the adequacy of the girder can be too slack for a few reasons:  

(a) the distribution pattern of (flexural ± torsional) shear stress and (flexural bending ± warping) 
fiber stress throughout the profile may be more complex than normally anticipated especially 
when dealing with many load combinations,  

(b) the allowable bending stress and allowable shear stress may vary throughout the profile 
especially when fatigue is one of the design requirements.   
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In predicting the 
unpredictable 
(through 
experience or 
gut feeling), it is 
better to add a 
few extra nodes 
for girders with 
thrust plate.  
Better than 
otherwise these 
nodes should be 
located at 
strategic points 
that you 
“believe” would 
be helpful in 
evaluating the 
“state of stress” 
of your girders.   

Just be aware 
that adding extra 
nodes to the 
model does not 
make much 
difference if you 
calculate Cw 
through 
automation.  But 
it does become 
much more taxing 
if Cw is obtained 
by manual 
means.   

As a result of 
“thinking beyond 
Cw”, instead of 
using the bare 
minimum of 12 
nodes, we make 
up our “middle 

line profile model” with 20 “nodes” and 19 “node linkages” in total.  Here we added: 

• nodes 15 and 41 in the top flange to account for rail clip connection,  

• node 11 right at the bolt gage location where it joins the web of W21 to one of the 
flanges of C8,   

• nodes 5 and 21 in the bottom flange for seat bolt connection plus  

• a few extra interior nodes.   

As for naming the “linkages” between “nodes” in this article, we will purposely call them 
“segments” instead of “elements” considering the fact that one element may contain one or more 
subsets joined from a single or a multitude of segments.   
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User Coordinate Axes System 

This is the x-y Cartesian system chosen by the user for the convenience in “describing” profile 
geometry.  Calling it the “user axes system“ is to distinguish it from the “principal axes system” 
that we would establish shortly.  The “orientation” and the “origin” of user axes system can be 
chosen arbitrarily.  The liberty in choices does not apply to principal axes system for it is unique to 
a given profile. 

Before locating the 
“origin” of the user 
system, let us 
define the “y-axis” 
to be collinear with 
the centerline of 
the web of W21.  As 
for the “x-axis”, we 
prefer to have it 
lined up with the 
bottom extreme 
fiber of the bottom 
flange.  You can 
verify on Calc page 
1 the location of 
the “user system 
origin” based on 
this scheme.  You 
may have it any 
other ways per your 
convenience but 
here are some of 
the advantages (or 
disadvantage) of 
our preference:  

(a) the y-
coordinate for 
all the nodes 
would always 
be positive that 
we should 
appreciate 
later for not 
having to mess 
with so many 
numbers with 
negative sign 
many times 
over;  

(b) it would facilitate the re-assignment of nodal y-coordinates due to any revision in segment 
attributes especially changing in bottom flange thickness.   

Data Input 

Notice that it requires seven (7) discrete entities of (input) information to describe the profile 
geometry.  These input information (data) whether symbolic (text), logical, or numerical are 
normalized into two core tables:  

(a) Node table with three (3) fields for: node identification (ID), nodal x- and y-coordinates,  
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(b) Segment table with four (4) fields for: Segment ID, “Incidence From” node ID, “Incidence To” 
node ID, and the material thickness.   

In this application: all the IDs are of symbolic type while nodal coordinates and segment thickness 
are of numerical type.  You may need to add extra “fields” in each table or create a few more 
tables to store your transition data as required. 

Now let us review both Calc page 1 and page 2 and take notice of a few facts on our “Data Input”:   

(a) from a “database design” point of view, “Node” table takes higher precedence over 
“Segment” table.  In other words, “Node” table (both the data structure design and data 
content input) should be established first. 

(b) the numbering system for both “Node” and “Segment” IDs is entirely arbitrary.  We have 
choices of using “numerals” or “text characters”.  Professionally we should use “text 
characters” for purpose of “identification” (not for “calculation”). 

(c) as for the “segment termination incidences”, there is no set pattern on which end should be 
the “From” node or which should be the “To” node.  One of the rules we must adhere to is that 
any (input) node ID used for specifying segment connectivity purpose should already be defined 
in the “Node table” (thereby maintaining the Data Referential Integrity);  

(d) typical segment should always follow a rule to have uniform thickness between its “From” node 
and “To” node.  In dealing with change in thickness within a segment, we must add extra 
node(s) in between making all segments comply with the thickness rule. 

(e) material thickness for segments joined by weld or bolt should be additive from all the 
participating segments.  Using the “resulting thickness sum” is to simulate that these segments 
are “fused” into one idealized (combined) segment.   

For instance: web thickness of W21 = 0.375 and flange thickness of C8 = 0.39.  For segments 10 
and 11 being joined by bolt at node 11, we would use combined thickness = 0.765 replicating 
that the W21 web and C8 flange would react in unison under loads;  

(f) for any “fused segment” transitioning contiguously to the immediate adjacent “clean-and-free-
from-joining element”, the thickness should be considered “insignificant”.  Such “segment” 
does not really exist.  Its presence is only for model “linkage purpose” therefore we may assign 
a value that is relatively trivial comparing to the thickness of all other “significant” segments in 
the profile.  As in our example for segments 9 and 12: we would assign a fictitious thickness = 
0.001. 

Data Presentation 

The “usefulness” of calculation is measured primarily by the “numerical accuracy”.  Numerical 
mistakes found in engineering calculation are very much avoidable but inevitable because not every 
Preparer is perfect.  This is why some calculations must be reviewed for quality assurance purpose.  
The bottom line is to catch the mistake and fix it in time.  The amount of time it takes for a 
Reviewer to “review” depends somewhat on how appealing the information was arranged.  If the 
“presentation” were clear to the Preparer, then it would take much less effort for the Reviewer to 
“identify” and “rectify” the mistake(s) should there be any.   

Engineering calculation is a presentation of processes.  Each process follows a preset routine.  When 
we design a beam, the process may involve writing down dimensions, setting up applied loads, 
calculating internal forces and moments, applied stresses and allowable stresses, etc.  Each beam is 
treated as a separate entity.  The documentation for designing a beam follows a top-down line-by-
line style.  In calculating warping constant, the process also follows a top-down style but with a 
twist.  It involves many cycles of marching forward for new data then referencing backward for 
existing data much as in a zigzag.  In addition, to carry out each step the entire data set gets 
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involved.  In other words, if we execute nodal (segment) data, information related all 20 nodes (19 
segments) would get the same mass-production treatment. 

In that mass-
production process, 
some operations are 
purely “node-
driven”, some are 
purely “segment-
driven”, while 
some others are 
mixed.  In light of 
the sheer amount of 
data involved at 
various stages 
(steps), it would be 
impossible to avoid 
but to present the 
transition data by 
means of 
tabulation.  Based 
on the “look” from 
each Calc page, we 
shouldn’t be 
surprised that we 
must undergo many 
cycles of data 
“storing”, 
“retrieving” and 
“manipulating” 
before arriving at 
Cw.   

As some of you who 
grew comfortable 
with spreadsheets 
would have 
guessed: this 
“homework 
problem” fits 
perfectly for a 
spreadsheet-like 
application.   

Let us also clarify: the term “spreadsheet-like” can be “database-like” as well.  Let’s not debate 
on how easy or otherwise, to implement applications using either type of automation tool.  
Nevertheless it pays to understand the process at hand first and then plan out the overall solution 
strategy in terms of what either tool can offer.  For that we are not going to be shy from borrowing 
a mixed bag of spreadsheet and/or database terms to put across my points from time to time (as 
we already have). 

Data Manipulation 

After we completed the input for both tables, our very next chore would be to retrieve the 
coordinates of starting (From) and ending (To) nodes for each segment and get ready to locate the 
centroid of our profile.   

Since all the source coordinates are stored in “Node table”, the chore can easily be accomplished 
by using “LOOKUP” Function or an Inner-joint Query in that the “From Node” (or the “To Node”) of 
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a segment in the “Segment table” matches the Node ID in the “Node table”.  The result from this 
practice are shown under the last four (4) columns in the Segment tabulation as [xi], [yi], [xj] and 
[yj] on Calc page 2.  Implicitly we assigned “i” as the index for “From node” and “j” as the index for 
“To” node. 

The “Segment 
tabulation” now 
combines both the 
“original input 
columns” and the 
“LOOKUPed 
coordinate 
columns”.  This 
would constitute a 
newly expanded 
“database View” 
forming the basis 
for further data 
process.  By way of 
this practice we 
exhibited the 
simplest form of 
“Data Merging” or 
“Query” after its 
action.  The 
“lookup” feature is 
a standard protocol 
in SELECT Query.  
The columns of 
data displayed in 
the “View” are the 
result of “what we 
pick is what we 
get”.   

The “LOOKUP” 
Function (or 
feature) is among 
one of many 
predefined library 
Functions.  These 
Functions are 
inherent to the 
software, available 
for us to “Call” up 
to “look something up” or to perform numerical operations like taking the Square Root of a number.  
Besides that, users like us can also define our own Functions explicitly (or implicitly depending on 
how we qualify them) for our own purpose.   

“Simple” Functions or “program procedures” defined by the user often involve only a handful of 
data operators and operands placed in one or several fields (cells).  They are usually entered 
directly as an “in-line statement” into a database Query field or a Cell in the spreadsheet.  It is 
very convenient to use them for purposes as simple as adding or subtracting the value from one field 
(cell) to the value in other fields (cells).  Here are a couple of examples:  

(a) using expression [Lx] = [xj] - [xi] to calculate the length of a segment projected onto the x-axis 
then assign the result to [Lx],  
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(b) using [L] = SQR([Lx]^2 + [Ly]^2) to calculate the true length of a segment then assign the result 
to [L].     

In more complex situations, these functions can be custom-developed full-blown application 
Functions stored in separate program modules.  By design, a Query can manipulate its operand data 
residing in:  

(a) a single table or several discrete tables, and/or involving 

(b) other sibling Queries (participating as sub-queries) through data links (or none at all)  

to create a new database “View”.   

Data tucked behind each View is called “Recordset”.  In relational database applications, the data-
linking relationship(s) can:  

(a) be predefined as in this case that the “Node ID” from “Node table” is linked through an “one-
to-many” relationship to both the “From Node” and the “To Node” in “Segment table” or,  

(b) be established on the fly (known as late-binding technique) for application data lacking preset 
relationships.   

Also by specifying data domain criteria, Queries can be controlled “by design” to manipulate either 
the entire collection or a handful of data records associated with the active Recordset domain.  For 
different purposes the resulting database “View” from a Query can contain:  

(a) a multi-rowed tabulation collecting all the domain records to become a “Full-Domain 
Tabulation View” or  

(b) just one single “summary line” displaying the return value from application of  “Domain 
Aggregate Functions” to the entire Recordset becoming a “Summary line View”.   

Among others, “Maximum”, “Minimum”, “Average” and “Total” (or “Summation“) are some of the 
most common uses of domain aggregate functions in engineering applications.   

Both types of data “View” are essential and equally important to our calculation.  Notice that the 
“Full-Domain Tabulation View” appeared more often than “Summary line View” in this Calc.  Let us 
review just a few Calculation statements near the top of Calc page 4:  

(a) terms [SA], [SAX] and [SAY] are the results from applying “Summation” (Domain Aggregate 
Function) to terms [A], [AX] and [AY], respectively from Segment Properties’ Recordset already 
tabulated on Calc page 3.   

(b) The “Summary line View” had been subtly hidden behind the scene in the Calc.  Instead of 
tabulating them we had expressed the results as if we manually calculated the centroid 
coordinates [cx] and [cy]. 

Principal Axes 

Once the coordinates of centroid are located, the profile moment of inertia with respect to (w.r.t.) 
the user axes, [Ixx], [Iyy] and [Ixy], can be calculated.  From that the orientation angle [α] of 
principal axes w.r.t. the user axes and the moment of inertia w.r.t. the principal axes, [Ix’] and 
[Iy’], would follow.   

Before moving on to shear center-based properties we need to finish up with three (3) more 
centroid-based properties:  

(a) the distance [ρ] for each segment measured from the “centroid” orthogonal to the “segment 
tangent line”.  Tangent line is formed by connecting the “From Node” to “To Node” for the 
respective segment,  
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(b) the Double Sectorial Area [ρds] w.r.t. centroid for each segment, (see algebraic formulation on  
Calc page 4) and  

(c) the nodal coordinates, transformed from user-axes based system into principal axes based 
system: 

a. through translation only: [xi – cx], [yi – cy], [xj – cx] and [yj – cy] for shear center-based 
properties, 

b. through combination of translation and rotation, [x’i], [y’i], [x’j] and [y’j] for flexural-
based properties that are important for unsymmetrical bending. 

To relish the 
power of Query, 
all the centroid-
based properties 
covered so far 
(including the last 
three properties), 
as shown on Calc 
pages 2 through 
7, can be 
“calculated” by a 
series of SELECT 
Query working in 
chain reaction.  
The results from a 
leading Query can 
be “Looked Up” 
by a subsequent 
Query and then 
be processed 
further all the 
way from original 
“Node” and 
“Segment” table 
data down to the 
final “nodal 
coordinate 
transformation”.  
Intermediate 
results from any 
Query in the 
chain can be 
brought to 
“View” at any 
instance.   

Source data 
records stored in 
a “Table” is 
treated the same 
as that in a 
“Query”.  In Data 
Access’ term, 

records from both sources are collectively called “Recordset”.  They even share the same “View” or 
“Look” when “Previewed” or “Opened” within the database desktop.  The difference is that the 
data in a “Tables” are “Static” whereas data in a “SELECT Query” are “Dynamic”.  Being dynamic 
means any changes made in the source Table (or Query) content would trigger an instant (cascading) 
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update(s).  The update applies to Recordset behind all the SELECT Queries that have association 
with the source data.  “Updates” are done automatically regardless if these Queries are dormant or 
“Opened” in user/desktop views or not.   

“Dynamic” behavior should not affect the Query setup for our calculation at hand.  We point this 
out as a caution on “Dynamic Recordsets”: if you make a “Function call” from within a chained 
Query that manipulates data derived from another preceding (feeding) Query and that piece of data 
happen(s) to be “Null” then you should watch out for unexpected results. 

Shear Flow Scheme 

Without knowing 
their intensity and 
how the shear 
stresses were 
actually distributed 
over the profile, 
“shear flow” is at 
best a graphical 
prediction of stress 
vectors.  These 
vectors represent 
the user’s view (or 
illustration) of 
“shear stress flow 
orientation” 
traversing each and 
every segment for a 
given profile.  In 
order to work out 
the “proper” 
location of shear 
center, this is the 
very first step no 
matter how simple 
(straightforward) 
or how complex the 
segment 
arrangement may 
be.   

Channels, arcs, 
zees or any single-
line linkages are 
example profiles 
having 
straightforward 
“segment 
arrangement”.  By 
“straightforward” 
we mean the most basic profile shape that always conforms to singular continuity.  Their middle-line 
models can be drawn using one “single stroke”.  If one stroke represents one “shear flow branch”, 
then these shapes would have only one single flow branch.  Knowing how this works we can “define” 
the shear flow pattern for any open sections.  Here in the homework problem we are dealing with a 
profile having not-so-straightforward segment arrangement.  Its shear flow pattern has to be drawn 
with multiple strokes or multiple flow branches.   

As depicted in Calc step 9, our model takes four (4) strokes to complete as we have chosen to 
define our “four-branched” sample.  Are there any other ways to define that?  The answer is 
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“Yes” provided that we follow a certain “scheme”.  Let us draw the strokes in “unidirectional 
manner” using my Scheme for this example:  

(a) starting arbitrarily the 1st flow branch from any terminal node, say node [16];  

(b) moving along segments at will through as many nodes [15, 14, 41,...] as we encounter in 
between;  

(c) finishing the 1st flow branch upon reaching another terminal node [42];  

(d) diverging the 2nd branch off any interfacing node, say node [14] from the 1st branch then 
completing the 2nd branch as in steps (b) and (c) [14, 13, 12,...21, 22];  

(e) diverging 
subsequent 
branches off 
from a node 
on any 
established 
branches the 
same way 
until 
depleting all 
segments 
without 
duplicating 
usage of any 
one of them.   

Imagine if it were 
a “tree 
structure”, we 
may visualize the 
1st branch as 
“trunk” and all 
the other 
offshoot branches 
as “twigs”.  Here 
is another 
example 
following the 
same “scheme” 
but taking 
different routes 
that we end up 
with: 

(a) branch 1 as: 
from node 
16, 15, 14, 
13, 12, 31, 32 
to 33;  

(b) branch 2 as: 
from node 
12, 11, 10, 9, 
8, 7, 6, 5 
then 4;  
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(c) branch 3 as: from node 14, 41 to 42; and 

(d) branch 4 as: from 6, 21 to 22, or any other arrangement(s).   

Notice that the 
flow “direction” 
along these 
branches defined 
in both examples 
does not conform 
to any explicit 
rule in sign 
conventions.  In 
other words, both 
examples 
employed no 
assumptions on 
the generic 
positive (or 
negative) flow 
senses.  Neither 
has it any bearing 
on how the 
segment nodal 
incidences were 
assigned in the 
original Segment 
input (see inset 
at lower right-
hand corner on 
Calc page 7).   

Therefore it 
really doesn’t 
matter how 
“wrong” our 
prediction on the 
stress flow 
“senses” that 
may be.  
Consequently all 
the “wrongs”, if 
ever true, would 
be “corrected 
automatically” 
after all the 
numerical 
integrations are completed.  This “auto-correction” would work for any profile geometry so long as 
their branch assignments and the associated “node sequences” were set up consistently using this 
“scheme”. 

Once they are finalized, it is important to store the shear flow branch data.  Because we have to 
refer to them for at least three (3) times from here on, it’s preferable to save them in a table 
rather than plain program variables (arrays).  This important table we may name it “ShearFlowID”, 
“ShearFlowBranches”, or simply “Branches”.   

The “Branches” table should have at least four (4) fields to store:  

(a) Shear Flow Branch ID,  
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(b) Nodal 
Sequence 
(Serial) ID,  

(c) Node ID and  

(d) Incidence 
Segment ID.   

Much have we 
tried, there 
seems to be no 
“practical way” 
to derive the 
“shear flow 
definition data” 
using database 
“Queries” alone.  
In two ways we 
can prepare the 
records for 
“Branches” table 
by:  

(a) filling in 
manually 
after defining 
shear flow 
branches on a 
sketch similar 
to that as 
shown in step 
9 on Calc 
page 8, or  

(b) filling in 
automatically 
by a custom-
made 
Program to 
carry out the 
“scheme” 
(This is an 
excellent 
challenge for 
you engineering programmers). 

Some of the formulas in calculating shear center-based properties appear very intimidating when 
expressed in algebraic terms.  But to carry out the calculation, it is actually a very clear-cut process 
so long as we don’t misuse or mix up the terms in each step.  Anyone can do it simply by following a 
set procedure.  Numerically it is always forgiving even if we plugged in flawed or wrong shear flow 
data to the formulas.  It would still lead us to the “false location of shear center” and wrong value 
of Cw with no forewarning.  On the whole it is never forgiving for any negligence leading to “garbage 
in garbage out” results.  To be “wrong” we prefer it be wrong “physically” rather than “logically”.  
To make sure we do it “logically correct” in defining shear flow data, it is essential to verify the 
followings:  

(a) complete the “trunk” definition first before moving on to the “twigs” 
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(b) make sure 
each twig is 
diverging off a 
node on an 
established 
branches (i.e. 
twigs do not 
cross over the 
trunk or over 
each other); 

(c) without 
duplicating 
usage of any 
segment, make 
sure that all 
the nodes and 
segments have 
participated in 
the flow 
branch 
definition; 

(d) the total 
number of 
records in the 
“Branches” 
table equals to 
the sum of 
“Number of 
Segment” plus 
“Number of 
Branches”;  

(e) the flow 
“sense” from 
node to node 
should be 
unidirectional 

with no reversal within the same “Branch. 

After practicing the shear flow scheme a few times you may have notice a few interesting facts that 
it doesn’t matter  

(a) where each node is located,  

(b) how thick each segment may be,  

(c) how many strokes it took to draw up the profile and  

(d) how we sequence the nodes.   

We point this out to prove a point that shear flow scheme is a “pure logic process”.  Our “scheme” 
utilizes only three (3) items: Segment ID, Segment From-node and To-node IDs from “Segment” 
table without incurring any reference to “Node table” at all.  The logic sounds simple but could be a 
real challenge to automate the shear flow assignment process together with the ensuing procedures 
for numerical integrations toward Cw. 

Double Sectorial Area w.r.t. Centroid (ω) 
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“Summation” is the simplest form of numerical integration.  Recall that we first applied 
“Summation” method to locate the profile centroid and then obtain the user-axes based moment of 
inertia.  This method unfortunately does not work for integration of Double Sectoria Area (DSA) and 
other “shear flow-related integrations”.  Instead we must proceed in a step-by step (node-by-node) 
manner.  Here is how it works in a nutshell, the “succeeding value” of integration at any 
intermediate step is dependent on:  

(a) its own attributes and  

(b) the “preceding value” determined from a previous step.   

This suggests that we must progress the nodal data integration in an ascending (or descending) order 
according to the shear flow logic.   

To carry out the ω = ∫ ρds integration for DSA, w.r.t. centroid, let us examine how it’s done (per 
step 10 on Calc page 8):  

(a) We begin with completion of the first four (4) columns by simply repeating (copying) the 
ID/serial data from the “Branches table”.   

(b) focusing on the 5th column tabulation: for a given node ID appearing in the 3rd column and its 
corresponding segment ID in 4th column, with additional reference to the “Segment” table, 
based on its input “From-Node and To-Node” logic pattern, define the Segment-Node-
Incidence Sign convention (SNIS).  Fill in the SNIS under the 5th column.   Apply the sign 
convention positive (+1) if current incidence node is a From-node, negative (-1) if incidence 
node is a To-node.   

 
The key is to apply the “Sign Convention Strategy” consistently to all nodes.  Remember that 
we made a statement: “it really doesn’t matter how wrong our prediction on the stress flow 
senses that may be”.  Well, now is the time to rectify through properly assigned sign 
conventions.  SNIS would automatically redeem for us if we ever were “wrong” to begin with.  
Because it takes a lot of “back and forth” looking around between the current Calc tabulation 
and the Segment table, this step turns out to be the most crucial step in all. 

(c) look up the ρds value from Calc step 6 for segment identified in the 4th column, then tabulate 
the resulting ρds to the cell under [KNOWN ρds] column; 

(d) calculate the product of [SNIS] * [KNOWN ρds] for the current segment then place the result 
under column “ρds FOR INTEGRATION” value (SEGV); 

(e) the “RESULTING NODAL ω = ∫ ρds” value (RNV) can be interpreted as the instantaneous result 
of “ω = ∫ ρds integration” we are interested in, at the current node, on a given branch.  It is the 
“Sum” of “RNV” already known at the preceding node and the “SEGV” of the segment where 
the current node has incidence with.   

Data entered from step (b) through step (d) were only the “warm-ups” for each individual 
node/segment.  The real deal is the “process outlined in step (e)” that does the actual integration 
towards “DSA for the entire profile”.  Step (e) should be repeated “in succession” conforming to 
the “ascending” serial order assigned for each node on the given branch until finishing with the 
branch.   

Whenever a new branch is initiated at a certain Node, the initial RNV: 

(a) is either zero (0) (only once when integration process has just begun), or  

(b) must be LOOKed UP from another node having the same ID existed on a pre-processed branch 
appearing under “BRANCH INITIAL ∫ρds”.   

This integration process is much easier “done” than “said”. The “step/process” is not complete 
unless we carried out fully from branch 1, node serial 1 all the way through the last node on the last 
branch.  A sample worked-out on the “Node-driven” data flow for branch #1 can be traced by 
following the dotted arrow as shown on Calc page 8. 

Warping Moment of Inertia  



Warping Constant of Sections with Arbitrary Profile Geometry                           Structural Design Corp                                      Page 17 of 24 

“Warping Moment of Inertia” about Principal x’ and y’ Axes (WMOIPA) are designated as Iωx and 
Iωy, respectively.  
They carry a 
dimension unit of 
(Length)5 versus the 
(Length)4 for 
Flexural Moment of 
Inertia.   

The numerical 
integration formulas 
for WMOIPA 
expressed in 
algebraic terms are 
listed on Calc page 
10.  These formulas 
entail summations 
of aggregate 
properties “ω” and 
principal-axes 
based “x’” and “y’” 
coordinates, which 
were known at each 
node.  This is a pure 
“Segment-driven” 
process therefore 
the required 
information can 
easily be collected 
from a SELECT 
Query.  As a result 
the segment data, 
grouped by the 
corresponding 
“From node” and 
“To Node” IDs, are 
tabulated on Calc 
page 9.  The 
numerical excises 
leading to WMOIPA 
can be found on 

Calc pages 10 and 11. 

Shear Center 

On occasions if we deal with members of doubly- or mono- symmetric profiles time and again, we 
could get so used to and feel so comfortable with the fact that “the orientation of user-chosen-
axes for middle-line profile model is same as that for the principal axes”, for which both the 
orientation angle [α] and the product moment of inertia [Ixy]= 0.  This special condition due to axis 
symmetry leads to great degrees of simplification in our practices.  It simplifies every formula used 
to calculate profile nodal stresses, material allowable stresses and/or section properties including 
formulas for the location of shear center (read on for more details on this). 

Let’s review, among all the transition parameters and section properties we have covered so far, 
and see what we need in order to locate the shear center:  

(a) “Flexural Moment of Inertia” w.r.t. User-Axes; Ixx, Iyy and Ixy  
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(b) “Warping Moment of Inertial” w.r.t. Principal Axes; Iωx and Iωx and 

(c) coordinates of profile centroid; cx and cy.   

Let’s also define a few shear center-related unknowns:  

(a) Xref and Yref to be the relative displacements (translation distances) from the profile centroid to 
the shear center and  

(b) xo and yo to be the shear center coordinates based on user-axes system.   

Fitting different categories of profile geometry, there are three (3) cases of shear center formulas 
for Xref and Yref we need to get familiar with.   

Case 1: the simplest case applicable to the most obvious member category with doubly- symmetric 
profiles: the shear center always coincides with the centroid rendering both Xref and Yref = 0, and 
therefore xo = cx and yo = cy.   

Case 2: the most generic case applicable to all other profile geometries (with or without any axis 
symmetry), we may find them from many textbooks the expressions for calculating the coordinates 
of shear center as: 

Xref = (Ixy * Iωx – Iyy * Iωy) / (Ixy
2 – Ixx * Iyy)    (Eq. 1) 

Yref = (Ixx * Iωx – Ixy * Iωy) / (Ixy
2 – Ixx * Iyy)    (Eq. 2) 

If we apply them to mono- symmetric sections by setting Ixy = 0, then they can be simplified into 
Case 3: 

Xref = Iωy / Ixx        (Eq. 3) 

Yref = - Iωx / Iyy       (Eq. 4) 

It happens that in some textbooks and/or references where you may find Eq. 3 and Eq. 4 given as 
the formulas for shear center calculation with no mentioning that they are only applicable to mono-
symmetric profiles.   

If we were “new to the task” of locating shear center without further checking and blindly following 
(applying) Eq. 3 and Eq. 4 to a section having no axes of symmetry, we would still be able to obtain 
Xref and Yref but in fact these formulas (results) were wrong for the occasion.  We must be careful 
about the trap I mentioned in the first paragraph on this matter.  If you plan to automate your 
calculation I recommend that you always use Eq. 1 and Eq. 2. 

Finally by parallel shifting w.r.t. centroid, the coordinates of shear center per user-axes are: 

xo = Xref + cx 

yo = Yref + cy 

Double Sectorial Area w.r.t. Shear Center (ωo) 

Our next assignment per Calc step 14 (Calc page 11) is to perform integration for ωo , which is the 
“DSA w.r.t. Shear Center”.  In its integration formula ωo = ∫ ρods, the term ρo looks familiar but is 
actually a new term.  

Let’s go back to the formula for DSA w.r.t. centroid ω = ∫ ρds and recall that ρ is the normal 
distance from centroid to the segment tangent.  Here the only difference is that ρo is used in place 
of ρ, where ρo is the normal distance from shear center to the segment tangent.  Obviously the 
formulas for figuring out the geometry of ρ and ρo resemble each other if you check the Calc. 
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This is the second process involving shear flow-related data.  Starting with the same shear flow 
branch definitions, the numerical procedure for ωo = ∫ ρods is “almost identical” to that as described 
in the calculation for ω = ∫ ρds.  A worked-out “Node-driven” data flow for shear flow branch #1 
can be traced by following the dotted arrows as shown on Calc page 12.  I would leave it up to you 
to “see” any difference between ω and ωo.   

Normalized Unit 
Warping (ωn) and 
Warping Constant 
(Cw) 

“Normalized Unit 
Warping” is 
designated as ωn.  
The formula for ωn 
expressed in 
algebraic terms is 
shown on Calc page 
13.  It entails 
summations of 
nodal property “ωo“ 
and the cross 
sectional area of 
segment “tds”.  
This would require 
a two-step 
procedure to arrive 
at ωo because one 
of the two (2) terms 
is a profile 
“constant” and the 
other is a nodal 
“variable”.  The 
first step involves a 
“Segment-driven” 
process that 
integrates (ωo tds) 
of each segment 
over the entire 
profile into a 
constant “C”.  The 
second step is 
simply a “Node-
driven” process 
that subtracts “ωo” 

from “C” to arrive at ωn at each node as shown on Calc page 13.  The procedure for calculating 
warping constant becomes fairly simple once the corresponding values of “tds” and “ωn“ have been:  

(a) “collected” from all nodes and  

(b) “grouped” by incidence nodes with respective to each segment.   

Using a SELECT Query for the “grouping” followed by a “Summation”, we finally complete the 
calculation of Cw constant for our example by way of “classic method” (see resulting tabulations 
per Step 16 on Calc page 14).  We call it a “classic method” because the undertaking was achieved 
by performing numerical integration for “formulas” derived from “classic torsion theory”.  Here are 
some of the disadvantages from using “classic solution method” as demonstrated:  
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(a) tedious and time consuming 

(b) confusing every so often 

(c) full of numerical traps throughout the process.   

Besides classic 
solution method 
there are other 
methods we can use 
to avoid all that.  
Some of these are 
so called the 
“direct method” or 
“displacement 
method”.  Without 
knowing anything 
about principal 
axes, the “direct” 
formulation would 
lead to solution of 
“xo”, “yo” and all 
the nodal ωn values 
in one shot.  Better 
yet we don’t even 
need “shear flow 
definition” for that.  
This sounds 
fantastic and is a 
good trade off for 
not having to mess 
with numerical 
integration.  
However the most 
cumbersome chores 
in implementing 
these methods are: 
(1) setting up the 
property-geometry 
matrices and (2) 
solving for the 
ensuing 
simultaneous 
equations.  
Applying direct 
method to solve for ωn and shear center coordinates for our example profile of 20 nodes would 
require inversion of a 22 X 22 matrix.  

Warping Static Moment (Sw) 

“Warping Static Moment” (WSM) is another warping-related property designated as Sw.  Values of 
WSM must be known at each node before the “state of warping shear stress” of a profile can be 
evaluated.  Even if your interest is in Cw or ωn only and you have no desire to go any further, we still 
recommend that you follow through with this important subject if your member has arbitrary profile 
geometry.   

In the simplest case for sections having doubly- or mono- symmetric profile, we can easily verify if 
the nodal ωn values are distributed consistently and evenly about the matching axis of symmetry to 
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“see” immediately if we “made any mistake”.  But for sections with no axis of symmetry, there is 
no easy way (or no way) to validate the adequacy of warping-related properties (both ωn and Cw).  
Warping constant Cw comes form a chain reaction involving a full course of profile properties, to 
name a few:  

centroid, neutral axes, user-axes moment of inertia, principal-axes moment of inertia, 
shear flow data, shear center, ρ, ρo  ω, ωo and ωn, etc.   

ωn are the very last set of section properties we “touched” prior to final summation of Cw.  It is 
impossible to tell how right (or wrong) is our “Cw“ by looking at each ωn, but we can always 
compare them with values of WSM to “see” if we “made any mistake”.   

From textbooks on this subject we ran into a generic formula for WSM that looks something like this:  

Sw = ∫ ωn tds  

which is a definite integral ranging from “0” to “s” (where “s” is the coordinate of some 
node along the middle line of profile).   

WSM seems to only exist as “Cold Hard Figures” in graphical plots appearing in textbooks.  Scarcely 
there is any “practical” procedure accompanied with worked-out sample problem(s).  “Textbooks” 
have too much to cover therefore we can’t blame their authors for concentrating too much on the 
“why” and not so much about the “how” for any particular subject(s).  After all, most examples are 
suitable for students in pursuing passing grades.  Offering “Cold Hard Figures” without practical 
“step-by-step procedures” don’t go very far in helping (already graduated) engineers trying to solve 
everyday problems.   

How to implement the integration “Sw = ∫ ωn tds” becomes a mystery to a lot of engineers.  We did 
it our way here and would like to share that with you.  Hopefully it fills in the void before you find 
some other (more elegant) solution algorithms buried somewhere (we reckon). 

Let us break into the subject by apprehending a few important facts:  

(a) “warping normal stresses” are proportional to ωn 

(b) “warping shear stresses” are proportional to Sw 

(c) “warping shear stresses” vanish where “warping normal stresses” peak 

(d) “warping normal stresses” always peak at terminal ends (nodes) 

(e) “warping shear stresses” equal to zero at terminal nodes and peak where “warping normal 
stresses” vanish 

(f) therefore Sw equals to zero at terminal nodes 

These can be verified by inspecting the “ωn“ (already known) and “Sw“ (not yet calculated) values 
as plotted on Calc page 16.  We only need to compare the respective magnitude at terminal nodes 
16, 42, 33, 4 and 22 to substantiate if we erred.   

We mentioned earlier that the “shear flow information” would be used for at least three (3) times:  

(a) first: “ω = ∫ ρds” integral of DSA w.r.t.centroid,  

(b) second: similarly the “ωo = ∫ ρods” integral of DSA w.r.t. shear center,  

(c) and now the third: somewhat differently the “Sw = ∫ ωn tds” integral of WSM.   
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The word “similarly” and the phrase “somewhat differently” refer to “how we sequence” the “shear 
flow branch information” during integration.  The path taken on for DSA integration follows an 
“ascending flow” while in WSM it follows a “descending flow”.  Ascending flow starts from the first 
branch (#1), first node (#1) and ends at the last branch (#4), last node (#3).  Descending flow 
proceeds along a path in exactly the reverse order. 

It’s easy to implement definite integral ranges from “0” to “s” for profiles conform to singular 
continuity (channels for example).  Each of these profiles has only two (2) ends for us to concern 
about.  We simply carry out numerical integration either from one end to the other or vise versa.  It 

is convenient to 
interpret “0” as one 
of the terminal 
ends and “s” being 
the opposite end (or 
somewhere in the 
middle).  It doesn’t 
matter whether we 
follow ascending or 
descending order 
because there is no 
wrong end.   

Problem is how to 
deal with profiles 
with multiple 
terminal ends.  If 
we have not yet 
gone through Calc 
pages 15 and 16, we 
may ask these 
questions:  

(a) how to 
implement the 
definite 
integral ranges 
from “0” to “s” 
for the example 
profile with five 
(5) terminal 
ends?   

(b) which node to 
start with? 

(c) where does the 
integration 
end? 

Answers to all these questions are: “Use descending flow”.  Here is where it deserves more 
thorough explanation.  “Descending flow” is “somewhat different” from “ascending flow” in the way 
we handle the “s” portion of the integral.  As an excise we would leave it up to you to “see” the 
difference when this is all said and done. 

We recognize that “s” is the intermediate “integration path taken” up to somewhere within the 
profile boundary.  The leading extremity of the “s path” may arrive at anywhere in the vicinity of 
any given Node.  Chances are that it may be (a) right on, (b) nearby or (c) far away from some 
terminal end in focus.  Making things simple we purposely let “s” be “right on” a certain segment’s 
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“From Node” (or “To Node”).  From a numerical integration standpoint, it’s easier to deal with start 
node index “i” and end node index “j” than using the adjectives “From” and “To” (although either 
“i” or “j” can coincide with a “From” or “To” node in a physical sense).  In terms of integration we 
would always handle the “segment WSM” sequence from “node i” to “node j”.  The path we take 
must follow the “Descending Flow” along any given branch.  The calculated values of WSMs for a 
typical segment are labeled as Swi for node “i” and Swj at node “j”, respectively. 

Let’s go through the Sw algorithm: 

(a) process the integration steps (b) through (d) according to the descending flow branch sequence 
(ex: 4, 3, 2 then 1).  In other words, always finish all the “twigs” first and the “trunk” last, 

(b) when starting a new branch (from a terminal node), always set Swi = 0, 

(c) when starting a typical segment,  

a. verify “proper flow vector“ based on whether the “i-j flow” for integration is 
oriented along the “From-To flow” or along the “To-From flow”, 

b. identify which is node “i” and which is node “j” 

c. look up the value of ωn at node “i” as ωni  

d. set Swi as the summation of all Swi already known at node “i”, 

(d) to finish up a typical segment at node “j”, 

a. look up the value of ωn at node “j” as ωnj 

b. look up the value of cross sectional area of segment as “tds” 

c. calculate K = (ωni + ωnj) * (tds) / 2 

d. set Swj = K + Swi 

The worked-out “Node-driven” data flow following Sw algorithm for the entire profile can be traced 
by the dotted arrows appearing in the tabulation shown on Calc pages 15 and 16.  Because Sw must 
equal to zero at terminal nodes, it is easy to verify if we “made any mistake”.  Most importantly we 
need to make sure Swj = 0 (or approaches zero) at the very last node we processed (i.e. shear flow 
node serial #1, flow branch #1, or input node 16 on segment 15).  If “Sw <> 0” or “Sw does not 
approach zero”, there is definitely “something wrong” during the process.  This has demonstrated 
that validation of Cw for “profiles with no axis of symmetry” would not be possible without helps 
from Sw.   

It is worthwhile knowing the distribution of WSM throughout the profile is non-linear with 
intermittent peaks and valleys (PAVS).  To pin point where the PAVS are by inspecting Swi and Swj at 
both ends of segments alone is not enough.  Because WSM peaks where “warping normal stress” 
vanishes, it is easy to locate the PAVS by checking on each segment whether if the product of ωni * 
ωnj < = 0.  If this condition is true then we can locate the point of PAVS by interpolation and 
calculate the PAVS accordingly.  This extra step for PAVS is not necessary unless our interest also 
include the state of warping shear stress.  

Conclusion 

The subject in dealing with flexural horizontal shear stress (FHSS) was absent in this article until 
now for it has nothing to do with warping constant.  FHSS is calculated using “VQ/It” formula found 
in many textbooks on “strength of material”.  Property “Q” is called “First moment” or “Moment of 
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area”.  When a profile is subjected to both X- and Y- forces, the FHSS should be calculated using 
both Qx and Qy.  To figure out Qx and Qy for sections of arbitrary profile geometry with no axis of 
symmetry it requires numerical integration w.r.t. the principal axes in steps similar to but slightly 
different from algorithm used for “Sw”.  It should be not so hard to figure out the difference. 

In summary, to calculate the warping constant for this example profile with 20 nodes, we probably 
have to deal with at least 2000 numerical entries plus mathematical operators, parentheses and sign 
change keys, etc.  Through it all you may have sensed that the demand in data management rivals 
the effort in number crunching.  Fine-tuning numerical accuracy against excessive rounding-off and 
truncation errors is a tricky chore in itself.  An engineering problem suddenly eases itself into a data 
management problem without realizing it.  Therefore the solution process for warping constant is a 
perfect candidate for automation using database approach.   


