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Plastic section modulus is one of the essential properties for steel design per limit states strength 
criteria.  Both LRFD and ASD relate to plastic section modulus.  This relevance remains valid 
whether or not dealing with “plastic design”.   

In engineering mechanics, 
“Plastic” is complement to 
“Elastic”.  These two 
words characterize the 
material stress-strain 
relationship at varied 
stages.  Yet we seem to 
favor less towards 
“Plastic”.  Phrases such as 
“Centroid” or “Section 
Modulus” missing proper 
qualification seldom relate 
to “Plastic Centroid” or 
“Plastic Section Modulus”.  
However, to avoid 
confusion, we should 
address these terms in 
full: “Elastic Centroid 
(EC)”, “Elastic Principal 
Axes (EPA)”, “Elastic 
Section Modulus (ESM)”, 
“Plastic Centroid (PC)”, 
“Plastic Principal Axes 
(PPA)” and ”Plastic 
Section Modulus (PSM)” 
where appropriate.   

Before computing the PSM 
for any given section, one 
must locate its PC and 
orient the associated PPA.  
It is easy to do so for 
symmetrical sections 
because the PC either 
shares the same 
coordinates with the EC or 
is at a parallel offset from 
one of the EPA.   

AISC “Steel Construction Manual” has already provided PSM value for regular rolled shapes including 
a number of I-shapes built-up with cap channels.  Besides, the fundamental theory behind is rather 
simple; thereby PSM for symmetrical shapes of other geometry not found in AISC Manual can still be 
determined with relative ease. 

The problem is how to calculate PSM for irregular shapes with arbitrary profile geometry.  Lacking 
an axis of symmetry as reference, attempting close-formed answer to some of the properties for 
these profiles is extremely challenging (if not impossible).  However, the solution leading to PSM 
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can always be approximated by iteration process except that a “practical reference” does not 
appear to exist in the public domain for engineers to tackle profiles having no axis of symmetry.  

“Iteration” may be one of the least favored tasks to most of us because it often takes “time” and 
“luck”.  It sounds more horrifying to link up “Iteration” with Plastic Center and Arbitrary Profile 
Geometry.  But rest assure, the algorithm presented herein should be easy to follow and fun to 
implement.  By being called a “practical reference” here, it brings to mind a comprehensive 
numerical example that would:  

(a) explicitly carry out all the necessary steps towards locating the PC, calculating the PSM and the 
shape factors  

(b) in due process, establish a standard solution procedure applicable to any thin-walled section 
and a methodology suitable for automation.   

Most of the formulas already existed elsewhere.  The purpose of this article is not about explaining 
the “why” or taking credit of that but only to focus on the “how” for practical uses.  Our only goal 
here is to challenge ourselves with a “Homework Problem”, through which we apply the algorithm 
to practice the PSM computation for a “composite profile”.   

The example profile is made from a W21X55 with a C8X11.5, which is attached off the web of W21 
at a few inches below the top flange of W21.  The phrase “any thin-walled section”, not being 
specific, implies that the algorithm would work for any section types: “open”, “closed” or “mixed”.   

For easy references, all the calculation (Calc) pages prepared manually for this homework problem 
were scanned in as part of this article.  It takes eight (8) steps in the Calc to complete the task.  
Count only to seven (7) if we exclude the “shape factors” at the very end.   

As we go through some of the steps (and pages of Calc) in the ensuing paragraphs, subjects that 
appear trivial, self-explanatory or beyond the scope were bypassed for obvious reasons.  It pays to 
draw closer attention to the “Process” in problem solving techniques rather than drilling into 
numerical or typographical details.   

Middle Line Profile Model 

A hand sketched middle line model is shown on Calc page 1.  It resembles an ordinary model used in 
plane frame analysis.  However they serve different purposes.  While plane frame model is a serious 
precursor to stiffness matrix, our middle line model is merely an idealized graphical description of a 
profile’s “geometry” and “element connectivity”.  Middle line suggests that all the framework 
linkages in the model would always traverse along the line of mid-thickness through each and every 
profile component regardless to the thickness.   

Constructing middle line models is fairly straightforward as if drawing linear elements by connecting 
dots.  Take a plain I-beam for instance, it’s ample enough to “idealize” it with only six (6) nodes 
that depict (or digitize) all the participating components, which include two (2) flange elements 
and one (1) web element.   

For any given profile, its PSM remains the same whether we derived that value from a simpler or 
more complex model.  In terms of the number of nodes and segments, simple implies ”bare 
minimum” while complex would unnecessarily incite “extra work”.  If the application is for 
computing PSM only, be sensible to use simpler model unless obligated to use the same for broader 
intents.  In our open-sectioned example problem, we made up the “middle line profile model” using 
only 12 “nodes” and 11 “segments”.     

User Coordinate Axes System 

This is the X-Y Cartesian system chosen by the user to facilitate data collection.  Its “system origin” 
and “axes orientation” were elected entirely per user’s convenience.  “User coordinate system“ is a 
“user assigned scheme”, which is neither “EPA” nor “PPA”.  Although the EPA/PPA attributes could 
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be “guessed” correctly in simple cases without calculation, but not to be confused that in essence 
both EPA and PPA were unique to the given profile and were “mathematically verifiable systems”.  

For doubly- symmetric sections, there is no geometric distinction between the “Elastic Principal 
System” and the “Plastic Principal System”.  For these sections we often line up the user axes 
“intuitively” with at least one of the known principal axes or “purposely” intermix the user scheme 
with the EPA/PPA system because it is convenient.  But on the other hand, for sections with no axis 
of symmetry, “assigning” user axes for modeling purpose would be rather random because at that 
stage we don’t really know 
the EC/PC’s whereabouts, 
let alone EPA/PPA 
orientation.   

As shown on Calc page 1, 
the user system origin can 
be “conveniently” located 
after defining:  

(a) the “Y-axis” to pass 
through the 
centerline of the 
web of W21  

(b) the “X-axis” to line up 
with the bottom 
edge of the 
bottom flange of 
W21.     

Data Input   

Notice that it requires only 
seven (7) discrete entities 
of information to fully 
“describe” the profile 
geometry.  There are two 
(2) basic data categories 
that were applicable to 
our PSM example.  One of 
them is for identification 
(ID) purpose and the other 
is for quantity or 
measurement purpose.  
Referring to Calc page 1, a 
sample subset of each 
discrete data object for 
our model were brought in 
here as a starter: 

(a) Node identification ID; “04“,“10“,“32“,“42“, etc. 

(b) Nodal x- coordinates; X04 = -4.2, X10 = 0.195, X32 = 7.9925, X42 = 4.2, etc. 

(c) Nodal y-coordinates; Y04 = 0.26, Y10 = 16.19, Y32 = 18.34, Y42 = 20.54, etc.  

(d) Segment identification ID (in boxes); “05“,“09“,“33“,“41”, etc. 

(e) Segment “Incidence From” node ID; “04“,“09“,“32“,“14“, etc.  
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(f) Segment “Incidence To” node ID; “06“,“10“,“33“,“42“, etc.  

(g) Segment material thickness; 0.52, 0.001, 0.39, 0.52, etc.   

In this application: Data for ID purpose are of symbolic type while that for nodal coordinates and 
segment thickness are of numerical type.  From a “data design” viewpoint, information for 
“Nodes” should take higher precedence over that for “Segments”.  Here are some further details 
and helpful tips on model data:  

(a) the numbering designation and the input sequence for both the “Node” and “Segment” IDs 
were totally random.  Symbolic data type offers advantage of using any alphanumeric-text 
characters as data field content.  We are not compelled to identify Nodes and Segments with 
pure digits as in “04”, “11” or “32”.  Any other combination texts such as “A1”, “B2” or 
“C2901” would do if that serves our descriptive purpose.   

(b) when arranging “segment terminal incidences”, there is no rule over which end should be the 
“From” node or the “To” node.  Notice on Calc page 1, a small arrow was shown along each 
segment ID box demonstrating how liberal the incidence paths were chosen.  Given such diverse 
freedom in incidence scheme, we should always avoid assigning the same path more than once. 

(c) typical segment should have “uniform thickness” between its “From-node” and “To-node”.  To 
handle changes in thickness within the extents of an element, extra node(s) should be added in 
between so that each resulting sub-segment would comply with the “uniform thickness rule” 
on its own. 

(d) material thickness for segments joined by weld or bolt should be added into a sum from all the 
participating segments.  For instance: if the web thickness of W21 = 0.375 and flange thickness 
of C8 = 0.39, then for segment 10, we would use a combined thickness = 0.765 replicating the 
fact that both W21 web and C8 flange would respond in unison under loads.  

(e) some segments do not really exist but were incorporated into the model only for linkage 
transition continuity purpose.  The thickness of these segments could be regarded as 
“insignificant”.  As for segments 9 and 12 in the example: we gave them a fictitious thickness = 
0.001 signifying that they are relatively trivial compared to the thickness of other “significant” 
segments in the profile.    

Incorporating “insignificant” segments may be crucial in those “All-purpose” models.  In certain 
applications these segments are there for programming purpose to ensure the “logical” 
continuity of segment linkages.  Usually these all-purpose models were intended for calculating 
the “full suite of section properties” including torsion-related shear-flow logic scheme and 
warping constant, etc.  However, these “insignificant” segments may be omitted from our PSM-
specific application if chosen to. 

Data Presentation 

Engineering document is all about presentation of processes.  Arrangement of calculation contents 
should adhere to styles appealing to the Preparer’s personal liking and be acceptable per 
Corporate/project standards.  But the nature of problem on hand can affect the documentation 
layouts as well.  Among all, there are a handful of familiar styles, each could stand out by several 
choices of arrangements; in terms of “looks”: (1a) organized in top-down fashion and (1b) 
structured around results from data manipulation; and in terms of “tools” for the respective task: 
(2a) word processor style, (2b) spreadsheet or database style.  

Laboring through data manipulation steps can be quite an experience.  Some calls for combination 
of “action queries”, complex “select queries”, cross tabs, aggregate summaries, Boolean operations 
and computations, etc.  Basically it demands series of data “dropping-off” forwards and data 
“looking up” backwards in particular for procedures taking up iteration.   
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The solution process for 
PSM has plenty to do with 
data manipulation.  
Although not to the 
extreme, but it does 
entail result/summary 
from series of repetitive 
sub-procedures.  How to 
transcend data flows from 
“source” through 
“transition” to final 
“target” in a document 
that ties in all the actions, 
and how to relay 
information clearly to the 
Reviewers (including 
ourselves) calls for 
practice and experience.   

Data operation catering 
middle line models can be 
“node-driven”, 
“segment-driven” or 
mixed.  Keeping 
consistency throughout, 
each individual entity 
(object) in the data set 
should be dealt with using 
consistent algorithms 
whether logical, numerical 
or mixed.  When executing 
segment (nodal) data, 
information related to all 
11 segments (12 nodes) 
would receive the same 
mass-production 
treatment.  Taking 
shortcuts in database-
intense applications may 
be cool and tricky but not 

a good practice.  In light of the sheer amount of data involved at various stages (steps), it is more 
practical to present transition data by database-styled tabulations.   

Elastic Centroid 

It is evident from Calc page 1 that all the “source data” for our model were complete and ready.  
The question is: Where to start given that the information was all over the page in graphics form?  
Answer: Normalize them using database- (or spreadsheet-) oriented schemes.   

How?  The answer lies in bringing together both the “nodal coordinates” and the “pertinent 
connectivity relationship“ under one single “listing”.  The information needed for such listing can 
be compiled manually from several tables or as result of simple database query.  Not only for 
viewing convenience but more importantly this also helps avoiding “data referential integrity” traps 
further down the road.   

Most engineers know how to consolidate “design input” at the beginning of a spreadsheet (or hand 
Calc) but rarely sink in the idea that this is a part of basic “data normalization” effort.  What is 
data normalization?  Phrase it in database terms: it is the practice of analyzing data structures, 
establishing data relationships and enforcing singular data definition (free from double data 



Plastic Section Modulus of Sections with Arbitrary Profile Geometry                           Structural Design Corp                            Page 6 of 22 

entries) but allowing multiple references and protecting referential integrity.  Applying some of 
that here at the beginning of this calculation, our immediate chores would be to:   

(a) list (sort) the segment IDs in whichever sequence that makes the best sense to the task.  Form 
habits to be consistent and maintain standard sort order (ascending or descending) throughout 
all the tabulations that would appear in the subsequent steps,  

(b) retrieve the coordinates of the starting (From) and ending (To) nodes for each segment.   

Calc page 2 shows the “source data” being consolidated with segment ID appearing in the first 
column.  While collecting the data we imposed indices “i” and “j” to each pair of “From node” and 
“To node” coordinates.  Identified below are the definitions of data under columns 2 through 6: 

[t] = segment thickness  

[xi], [yi] = segment “From Node” X, Y coordinate based on user system 

[xj], [yj] = segment “To Node” X, Y coordinate based on user system  

See the word “segment” leads in every definition statement above?  It indicated that both the 
“node-based physical information” and the “segment-based logical connectivity” have been 
coerced (merged) into a multi-columned segment-based data set.   

It also hinted that following this step the “Node” entity would be “logically” done with.  Filling in its 
place would only be [xi], [yi], [xj] and [yj].  Here is a further implication: all the subsequent data 
manipulation steps yet to be applied would only be “segment-oriented”.   

Finishing the tabulation columns 7 through 10 on Calc page 2 were the elastic centroid-related 
“transition data”.  They were calculated for each segment by these definitions: 

[L] = segment length = [(xj – xi)
2 + (yj – yi)

2] 1/2 

[A] = segment area = [L] [t] 

[Ax] = first moment of segment area about the user Y-axis = [A] (xi + xj) / 2 

[Ay] = first moment of segment area about the user X-axis = [A] (yi + yj) / 2 

Once summing up the individual [A], [Ax] and [Ay] respectively into [ΣA], [ΣAx] and [ΣAy], the 
coordinates of EC could be determined as:   

[cx] = X coordinate of EC based on user system = ΣAx / ΣA 

[cy] = Y coordinate of EC based on user system = ΣAy / ΣA  

Elastic Principal Axes 

After locating the EC, we can now pre-position the EPA by creating a temporary Cartesian [Xc-Yc] 
system with these features:  

(1) its origin to pass through the EC and  
(2) its axes orientation to match that of the user [X-Y] axes (see sketch on Calc page 3). 

The only chores left for finalizing the EPA is the axis orientation that can be obtained by way of 
moment of inertia.  The individual segment moment of inertia [Ixx], [Iyy] and [Ixy] with respect to 
(w.r.t.) the [Xc-Yc] system were listed under columns 2 through 4 on Calc page 3 where: 

[Ixx] = [A] [(yi – cy)2 + (yi – cy)(yj – cy) + (yj – cy)2] / 3 

[Iyy] = [A] [(xi – cx)2 + (xi – cx)(xj – cx) + (xj – cx)2] / 3 
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[Ixy] = [A] {[(xi – cx)(yi – cy) + (xj – cx)(yj – cy)] / 3 + [(xi – cx)(yj – cy) + (xj – cx)(yi – cy)] / 6} 

Applying an algebraic summation over the individual segment moment of inertia [Ixx], [Iyy] and [Ixy] 
would lead to [ΣIxx], [ΣIyy] and [ΣIxy], in that order.  The orientation angle [α] of the elastic principal 
axes w.r.t. the user system would follow:   

[α] = 0.5 * tan-1[2 ΣIxy / (ΣIyy - ΣIxx)] 

For symmetrical sections, 
the product moment of 
inertia [Ixy] = 0 for all the 
segments.  Therefore [α] = 
0 in that case, otherwise 
the angular measured in 
radians for [α] is positive 
counterclockwise (and 
negative clockwise).   

The EPA Cartesian system 
is designated with 
superscript into [X’] and 
[Y’] to differentiate it 
from: (1) the user-sourced 
[X-Y] system and (2) the 
pre-positioned [Xc-Yc] 
system.  The [X’] axis, 
drawn through the EC at 
an acute angle [α] 
counterclockwise from the 
user-X axis, is the Elastic 
Principal Strong Axis 
whereas the [Y’] axis 
through EC at 90 degrees 
from [X’] becomes the 
Elastic Principal Weak 
Axis. 

Coordinate 
Transformation 

Not all the geometric 
property calculations 
require Coordinate 
Transformation.  The need 
for transformation 
depends on a few factors: 
(1) the geometric feature 
of the profile, (2) the section property of interest, and most importantly (3) the relationship 
between the EPA and the reference coordinate system. 

For doubly- symmetric sections, the (physical locations) coordinates of EC, PC and the shear center 
(or the center of twist) are identical.  If we take advantage of the symmetry by: (1) assigning the 
user system origin to coincide with the EC and (2) matching the orientations of user-axis along that 
of the EPA, then transformation of coordinates would be unnecessary when referring to any point of 
interest because the user-assigned system is physically the same as the EPA system. 

For mono- symmetric sections, one of the EPA axes always divides the profile into two symmetrical 
halves.  If we line up one of the user-axes with the axis of symmetry, then relating any point of 
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interest from the user sourced system w.r.t. EPA would need to deal with [cx] or [cy]  only because 
the EPA orientation angle [α] = 0.  

For unsymmetrical sections, EC, PC and shear center are distinctly positioned.  Establishing user 
system for that would take some wild guessing.  It may be probable, but vary unlikely to be able to 
pin down the user-system origin right over the EC without knowing where it’s at in advance.  Let 
alone matching up axes orientation with the EPA’s.  Therefore unless we nailed the user system 
origin dead on the EC and lined up our axes with EPA, otherwise the user system-based coordinates 
at any point of interest must be transformed w.r.t. EPA before any serious engineering calculation 
can begin.   

Thanks to the non-zero axis offsets [cx], [cy] and the orientation angle [α].  Some of us accustomed 
to the friendliness of symmetric sections may find it difficult when switching to a cumbersome EPA-
based environment.  A generalized coordinate transformation procedure for unsymmetrical sections 
involves both translation and rotation.  Translation is necessary when user system origin is at non-
zero offsets [cx] and/or [cy] from the EC while the rotation portion is needed when the EPA 
orientation angle [α] <> 0.   

Combining the translation of coordinate through parallel displacements with axes rotation, we 
arrive at the {X’, Y’} coordinates transformed into the EPA system: 

[X’] = (y – cy) * sinα + (x – cx) * cosα 

[Y’] = -(x - cx) * sinα + (y – cy) * cosα 

It is important to recognize that EPA system is the core of unsymmetrical sections.  It governs 
everything from nodal coordinates, elastic section properties, global structural response to all 
aspects of internal stress calculations, etc.  In the world of unsymmetrical sections, not only all the 
references to geometric dimension had to undergo coordinate transformation but also the formulas 
for all the common design functions would end up much more complex.  All of that owe to the 
coordinate transformation that played a significant role in “true structural engineering” that has 
anything to do with unsymmetrical sections.   

Upon substituting the “From-node”/”To-node” coordinates [xi], [yi]/[xj], [yj] (Calc page 2) into the 
matching formulas for [X’] and [Y’], the resulting transformed coordinates [x’i], [y’i]/[x’j], [y’j] 
were shown under columns 5 through 8 on Calc page 3.    

Now a timely question: What if we “forgot” to perform coordinate transformation when dealing 
with unsymmetrical sections (in other words: failed to acknowledge the implication from elastic 
principal axes)?   

The answer depends on what is at stake but the fact is: we could still plug in the erroneous data 
and the incorrect section properties into any set of equations (formulas) for all the familiar 
purposes and can’t tell the difference if we erred.  That is a typical “garbage in garbage out” 
situation as “everything right had been seriously wrong”.  This could be bad news for some of the 
old-fashioned crane runway girders inherent with unusual section geometry but qualified with 
structural properties and/or assumptions that may be wrong.   

How do we “know” we have a problem?  Well, it’s difficult to “know” it.  But we may actually “see” 
the structural distress based on the deficiency findings tallied up from close-up in-service 
inspections.  Otherwise at least numerically we could look for some of the “obvious” such as: 
numbers that shouldn’t be zero, trivial, infinitive or negative and what not, PC coordinates ended 
up at the least anticipated location or the value of PSM had been found less than that of ESM, etc.   

Transition from Elastic to Plastic  

EPA and PPA are sibling neutral-axis systems closely related to bending.  A typical similarity shared 
between them is that each component axis from either system always demarcates the section 
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profile into a compression zone and a tension zone.  The only difference is that each axis would 
attend its unique and appropriate way of “rationalizing” the zone boundaries.   

Before the extreme fiber stress of a section reaches “specified minimum yield stress” (Fy) under 
bending, EPA always takes full control and the stress distribution diagram is always of triangular 
shape.  The section stays in “elastic” so long as the stress does not exceed Fy.  Notably the stress-
strain relationship in both the compression and the tension zones is always linear.  Besides that, the 
EC remains fixed in location.  

After extreme fiber stress peaks at Fy, the extreme fiber strain level can still grow until the 
section fails or becomes “fully plastic”.  In transition from elastic to plastic as the extreme fiber 
strain increases, the rate of “change” in stress distribution in each zone (tension or compression) 
could be at the same or at 
a diverse gradient 
depending on these 
factors: 

• the setup of 
profile component 
geometry in the 
tension zone and 
that in the 
compression zone  

• the material 
stress-strain 
behaviors 
(relationships) 
under tension and 
that under 
compression   

Through stages, the 
“historical” shapes of 
stress distribution would 
initiate from “triangular” 
into “trapezoidal” then 
finally “rectangular” 
(block).  Correspondingly, 
the section would toil 
through phases from 
“elastic” into “elastic-
plastic” and then “full 
plastic”.   

Maintaining the sum of 
forces in the tension zone 
(ΣFt) and the sum of 
forces in the compression 
zone (ΣFc) in equilibrium 
at all stages is the key to 
solving PSM.  This simply 
requires that ΣFt = ΣFc at all times.   

While the strain keeps on increasing after the stress level already peaked at Fy, the EC would have 
to move continually to go along with the changes in the (trapezoidal) shape of stress distribution 
before reaching the full plastic stage.  Along with each finite movement of EC, the EPA would 
evolve (at parallel offsets from their instantaneous locality) into a new position only where 
mathematically ΣFt = ΣFc holds true.   
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Finally at the full plastic phase, both EC and EPA would stop moving and shifting.  The concluding 
geometric departure from the original EC/EPA position would become the PC/PPA, which is shown 
qualitatively as the “AXIS SHIFTS” on Calc page 4.   

Iterations and Iteration Strategy 

Prior to concluding EC/EPA‘s progression into PC/PPA while EC is still in transit, at each 
“incremental axis shifts” the exact coordinates of the “dynamic” position of EC, with respect to 
the [X’-Y’] system, can always be pinned down intermittently.  Meanwhile all the segment terminal 
incidences affected by such “axis shift” can be instantaneously transformed w.r.t. [X’-Y’] based 
system as well.   

As a result, each “incremental axis shift” can be considered as the trigger to a new “iteration 
cycle”.  The objectives of tracking down: (1) the changes in coordinate geometry at each segment 
terminals and (2) the numerical side effects imposed upon other entities at any given “cycle” 
constitutes our “Iteration Strategy”.   

Basically our strategy can be deduced into two primary tasks: (1) to calculate the transient 
coordinates and (2) to maintain the transient forces in equilibrium.  Understandably both of these 
tasks have to deal with frequent information storing and retrieving during each iteration cycle.   

To appreciate the importance and the dynamics of coordinate transformation of segment terminal 
incidences, let us begin by: 

(a) choosing a nodal point, which may be the “from-node” or the “to-node” of a segment, given 
their transformed coordinate pairs; {x’i, y’i} or {x’j, y’j}   

(b) considering [ex] and [ey] as the projected lengths onto any Cartesian X-Y axes independent from 
any specific system.    

The wild idea is somehow we should be able to derive the PC through these afore-mentioned 
entities.  Instead of treating [ex] and [ey] as some random sidetracks, why not we tie them in with 
the known EPA by the following characteristics:   

{ex , ey} = parallel offset dimensions from EPA X’, Y’  

{Xp , Yp} = new reference axes system based on ey, ex offsets from X’, Y’ 

It is plain to see from these definitions that [Xp] and [Yp] axes are correspondingly parallel to [X’] 
and [Y’].  Our imaginary segment’s “from-node coordinates”, if designated as [Xpf] and [Ypf] with 
reference to the offset axes [Xp] and [Yp], can now be calculated as Xpf = (x’i – ex) and Ypf = (y’i – ey).  
Accordingly the “to-node coordinates”, designated as [Xpt] and [Ypt], can be expressed as (x’j – ex) 
and (y’j – ey).  To write these coordinates using more structured statements: 

{Xpf , Ypf} = Xp-Yp based segment “from-node” coordinate = {x’i – ex , y’i – ey} 

{Xpt , Ypt} = Xp-Yp based segment “to-node” coordinate = {x’j – ex , y’j – ey} 

All we did so far was nothing but “applying a simple coordinate translation” from the EPA by some 
respective quantities [ex] and [ey].  It is important to realize for the moment that the translation is 
against the EPA but not the user [X-Y] axes.  To think beyond [X’] and [Y’] as in pure elastic stage, 
the introduction of [Xp] and [Yp] now point us into the direction of elastic-plastic and full plastic 
stages.  In order to deal with {Xpt , Ypt} in a more direct way numerically, by some means we need 
to skip the intermediate {x’j, y’j} and yet without missing any of the key players: [cx], [cy], [α], [ex] 
and [ey]. 

If we redefine these transient coordinates using long-hand expansions that incorporate coordinate 
references “rooting back” all the way to the original user-sourced [X], [Y] system, then finally we 
arrive at these generalized expressions as the segment incidence coordinates: 
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{Xpf , Ypf} = {(yi – cy) * sinα + (xi – cx) * cosα – ex , -(xi - cx) * sinα + (yi – cy) * cosα – ey} 

{Xpt , Ypt} = {(yj – cy) * sinα + (xj – cx) * cosα – ex , -(xj - cx) * sinα + (yj – cy) * cosα – ey} 

With good handle on the 
coordinate geometry using 
these formulas, we could 
then properly evaluate 
the force equilibrium 
condition engaging both 
the tension and the 
compression zones.  The 
boundary in between 
zones were already 
marked clearly by [Xp] and 
[Yp] axis, which in turn 
were pre-positioned at 
[ey] and [ex] offsets from 
the EPA.   

The formula of force 
equilibrium at plastic 
stage, [ΣFt] = [ΣFc], can 
be expanded in terms of 
“stress multiplied by 
area”, i.e. [Fy] * [ΣAt] = 
[Fy] * [ΣAc] where [ΣAt] 
and [ΣAc] are the sum of 
individual segment area 
prescribed by [Xp] and 
[Yp] axes into respective 
tension and compression 
zones.   

Upon canceling the [Fy] 
term, our final 
equilibrium requirement 
now becomes [ΣAt] = 
[ΣAc].  In other words: 
“force equilibrium” has 
turned into “area 
equilibrium”.  From the 
constant [ΣA] consisting the sum of [ΣAt] + [ΣAc], it leads to the simple condition of: 

[ΣAt] = [ΣAc] = [ΣA] / 2 

In actual practice, the generic equality [ΣAt] = [ΣAc] should always be assessed twice: once for the 
[Xp] axis bending and once for the [Yp] axis bending.   

Since we don’t know, for either axis of bending, which zone is compression and which is tension, 
then why not categorizing these areas based on the orientation sense of each individual axis.  For 
example, if we define a subscript “xp” to stand for “X-positive” and “xn” for “X-negative”, then the 
area term [Axp] would represent the segment area contained within the [+X] quadrants.  Likewise 
[Ayn] would be the segment area within the [-Y] quadrants. 

For the convenience of further explanation: we let [Axp], [Axn], [Ayp] and [Ayn] be the portion of 
“segment area” allotted into each respective zone (quadrants); [+Xp], [-Xp], [+Yp] and [-Yp].  Once 
the “from-node” coordinates {Xpf , Ypf} and the “to-node” coordinates {Xpt , Ypt} for the segment of 
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interest are known, its respective area [Axp], [Axn], [Ayp], [Ayn] dispersed into each corresponding 
zone can be figured out from that.   

Through trial and error, our ultimate goal becomes locating the PC with desirable accuracy at 
certain offset distances, [ex] and [ey], from the EC.  In a nutshell the iteration strategy would 
involve these steps: 

(a) initialize reasonable values for ex and ey  

(b) based on ex and ey, perform a generalized coordinate transformation and obtain values of Xpf, 
Ypf, Xpt, Ypt for each segment 

(c) calculate individual segment area dissect in each applicable [+Xp], [-Xp], [+Yp], [-Yp] zone as 
Axp, Axn, Ayp, Ayn  

(d) sum all the individual zone areas into ΣAxp, ΣAxn, ΣAyp, ΣAyn 

(e) evaluate for ideal condition whether: ΣAxp = ΣAxn = ΣAyp = ΣAyn = ΣA / 2 

(f) stop if condition is (e) is true, otherwise adjust the value of [ex] and/or [ey], continue from 
steps (b) through (f) until ideal condition in (e) is met.  

To avoid confusion for now, we provided only skeleton details as needed without stuffing too much 
in each step until we delve into the subjects of “Segment Area Strategy” and “Convergence 
Strategy”.  After all it would be much easier in the actual iteration process as we follow the sample 
Calc.   

Segment Area Strategy 

It is easy to figure out the full area [A] of any segment regardless to which coordinate system is in 
focus.  But calculating the partial segment area dissects in the tension and compression zones based 
on the transient Xp-Yp system could be confusing and tricky at times.   

Consider any general segment for example, its incidence coordinates based on the [Xp-Yp] system, 
{Xpf , Ypf} and {Xpt , Ypt}, could fall anywhere within one or more of these zones [+Xp], [-Xp], [+Yp] 
and [-Yp].  Consequently which portion of the segment is to be included into (or excluded from) the 
matching segment area dissect, whether Axp, Axn, Ayp or Ayn, could be ambiguous if we haven’t 
specify “which axis of bending is of interest”.  What we need now is some rational ways to: (1) 
organize the segment area dissect attributes logically and (2) handle the changes in segment data 
efficiently.   

Let us look at the “segment area dissect attributes” based on all the probable zone(s) that may 
apply to a thin-walled segment, then in a general sense, the “area layout/spread” of any segment 
could be “True” to only one of the listed conditions (a) through (f) as follow, with (g) and (h) being 
the special cases:  

(a)  entirely in [+Xp], 

(b) partial [+Xp] and partial [-Xp], 

(c) entirely in [-Xp], 

(d) entirely in [+Yp], 

(e) partial [+Yp] and partial [-Yp], 

(f) entirely in [-Yp], 

(g) Xpf = Xpt = 0   (special condition), 
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(h) Ypf = Ypt = 0   (special condition).   

Now from a different viewpoint: if we assess the “segment area-dissect attributes” based only on 
the respective axis of bending, then the full area of any segment could be broken down into one of 

these categories: 

(a) for Yp-axis bending: 
Axp, Axn  

(b)  for Xp-axis bending: 
Ayp, Ayn  

To comprehend all of 
these with no visual help 
seems awfully confusing.  
But they can easily be 
deciphered from the 
figures (BENDING ABOUT 
Xp and BENDING ABOUT 
Yp) shown at the bottom 
of Calc page 4.   

Next we need to: (1) 
examine the “area dissect 
aspect” of each segment 
for either axis of bending, 
and (2) segregate the 
outcomes based on how 
did it participate in the 
“positive” or “negative” 
zone (quadrants).   
Consider this for 
simplification: no matter 
which “zone” the segment 
“area” may “fall into” or 
be “cut apart” by 
whichever neutral axis of 
bending, there are 
basically only four groups 
of “area dissect” we have 
interests in:  

“FULL”, “PARTIAL”, 
“NONE” and “HALF”.   

Doing it symbolically by incorporating these abstract terms into our strategy, let us look into only 
the positive (+) quadrants, for example, and classify the area “participation” (A+) of each segment 
into one of these categories:   

(a) A+FULL: segment fits entirely (100%) in the “positive” zone 

(b) A+PART: for segment straddling both zones, only PARTIAL area fits in “positive” zone   

(c) A+NONE: not participating (0%) in the “positive” zone for the entire segment fits 100% in the 
“negative” zone only 

(d) A+HALF: only half (50%) of the area participates in the “positive” zone.  This special condition 
applies only when either Ypf = Ypt = 0 or Xpf = Xpt = 0  
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By the same token we can define the counterpart area terms, [A-FULL], [A-PART], [A-NONE] and [A-HALF], 
for the “negative“ zone (quadrants).  But we really have no need of doing so.  Remember: we are 
looking for “area equilibrium” between the “ + ” and “ - “ zones, and so for bending about the Xp-
axis we may take advantage to retain only the area [AYP] that lies in the “+Y” zone and leave off the 
calculation for [AYn] all together.  (This would cut down the amount of work by half and simplify our 
iteration process drastically.)   

On top of that, to figure out the positive zone area [A+FULL], [A+PART], [A+NONE] or [A+HALF] due to 
bending about the Xp-axis, we only need to focus just the effect due to coordinates [Ypf] and [Ypt] 
(and leave off any contribution from [Xpf] and [Xpt] all together that would cut down our workload 
even further).   

Now we are all set for the hands-on Segment Area Strategy.  As an example we would look into the 
procedure related to Xp-axis bending.  It is necessary to declare these initial conditions at the 
beginning:  

(1) let [ey] = einit, (an initial value) 
(2) let [A+FULL] = 0.  Herein the term [A+FULL] has been generalized to also include [A+HALF]. 
(3) let [A+PART] = 0. 

Next we construct the pseudo codes, for a typical segment that work something like this:  
Let the “full area” of the current segment = A 
Retrieve the coordinates Ypf and Ypt (by coordinate transformation based on offset ey) 
 
Start evaluating coordinate Ypf  
 

Ypf  < 0 
If only Ypt > 0 then 
A+PART = A+PART + Ypt * A / (Ypt - Ypf) 
 

Ypf  = 0 
If only Ypt > 0 then 
A+FULL = A+FULL + A  
 
If only Ypt = 0 then 
A+FULL = A+FULL + A / 2 
 

Ypf  > 0   
If only Ypt >= 0 then 
A+FULL = A+FULL + A  
 
If only Ypt < 0 then 
A+PART = A+PART + Ypf * A / (Ypf - Ypt) 

 
End of Ypf evaluation  

 
This should be applied to each and every segment.  At the end, our final [A+FULL] and [A+PART] would 
have been summed into [ΣA+FULL] and [ΣA+PART], respectively.  With [ΣAYP] being the total area in the 
[+Yp] zone we now have:   
 

ΣAYP = ΣA+FULL + ΣA+PART 

 

If an equilibrium condition is reached at this point then the area sum must also satisfy the equality: 
[ΣAYP = ΣA / 2].  But chances are that this may be wishful thinking at the very first try.  In other 
words, based on the guesstimated [einit] we come to a [ΣAYP] value that did not pass the equilibrium 
check.  More specifically: [ΣAYP <> ΣA / 2].   

To move forward we ought to make another educated guess of [ey].  For that we could work out the 
numerical value later but first let us introduce another symbol: [eyincr] = incremental adjustment to 
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the previously estimated [ey] offset from Xp-axis.  With [eyincr] still an unknown for the time being, 
we can certainly hope for these two perfect conditions:  

 
(1) [eyincr] is indeed the final incremental shift we were seeking and  
(2) all the current [A+FULL] stays being “FULL” and all the current [A+PART] remains being 

“PARTIAL”  
 
Given condition number 
(1): we can pseudo-
finalize the “Segment 
Area Strategy” and apply a 
“mass-transformation” of 
the entire suite of 
coordinates for every 
point of interest from the 
current [Yp] into ([Yp] – 
[eyincr]).  This step may be 
interpreted as a result 
that the Elastic Principal 
X-axis had been shifted 
deeper into the “positive 
Y zone” by the [eyincr] 
amount.  Inevitably these 
transformed coordinates 
would bring changes to 
the area summation 
value(s) as well.   
 
With perfect condition 
number (2): if as we had 
hoped for, the only 
numerical side effects 
from the preceding “mass 
coordinate 
transformation” would 
only apply to the value 
belonging to the [ΣA+PART] 
portion but not to the 
[ΣA+FULL].   
 
To accommodate the 
pseudo-final incremental 
shift [eyincr], the affected 
aggregate area [A+PART] for 
each participating 
segment must now be 

updated into a brand new entity [A+PARTnew].  Accordingly from the pseudo codes, the formulation for 
that would be:    
 

A+PARTnew = ([Yp] – [eyincr]) * A / ∆Yp  
 

In which for Ypf  < 0 and Ypt > 0: ∆Yp = (Ypt - Ypf),  
and for Ypf  > 0 and Ypt < 0 : ∆Yp = (Ypf - Ypt), 

 
Or simply: ∆Yp = |Ypt - Ypf|. 

 
Equilibrium requires that [(existing ΣA+FULL) + (new ΣA+PARTnew ) = ΣA / 2].  By retaining the values for 
both [ΣA+FULL] and [ΣA+PART], which were “leftovers” from the iteration cycle immediately preceding 
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the current cycle, and treating [eyincr] as unknown constant, we can formulate, substitute, expand, 
rearrange, and solve for [eyincr] as follows: 
 

ΣA+FULL + ΣA+PARTnew - ΣA / 2 = 0  
 ΣA+FULL + Σ { ([Yp] – [eyincr]) * A / ∆Yp } - ΣA / 2 = 0 

ΣA+FULL + Σ { [Yp] * A / ∆Yp } – [eyincr] * Σ( A / ∆Yp ) - ΣA / 2 = 0 
ΣA+FULL + ΣA+PART – [eyincr] * Σ( A / ∆Yp ) - ΣA / 2 = 0 
ΣA+FULL + ΣA+PART – ΣA / 2 = [eyincr] * Σ( A / ∆Yp ) 
 
solution: [eyincr] = (ΣA+FULL + ΣA+PART – ΣA / 2) / Σ( A / ∆Yp )  

 
In which, appearing in the denominator, the discrete term (A / ∆Yp) may be interpreted as the 
“Normalized segment area projected onto the [Yp] axis”.  Very importantly, we must recognize that 
this term has nothing to do with [A+FULL] because it was derived straight from the expansion of 
[A+PARTnew].  Therefore we need to keep in mind that this expression applies only to segments with 
area straddling both zones, or with a corresponding “segment area layout” evaluated as True to 
the condition of “partial [+Yp] and partial [-Yp]”.   
 
We had just finished elaborating the “segment area strategy” for bending about the Xp-axis.  When 
applying this strategy as the basis for successive approximation, each succeeding [eyincr] would lead 
to:  

(1) new set of transformed coordinates [Ypf] and [Ypt] at segment incidences and  
(2) updated segment areas [A+FULL] and [A+PARTnew].   

 
As a result, the new sum from adding [ΣA+FULL] to [ΣA+PARTnew] were checked against [ΣA / 2] for 
convergence.  The process would repeat as required until the conditions stipulated in “Iteration 
Strategy” were met.   
 
A similar strategy can be formulated and derived for sections subjected to bending about the Yp-axis 
as well.  We would leave that as a homework exercise.  
 
Convergence Strategy 
 
When given a function F(X) of variable ‘X’ and wish to solve for ‘X’ that satisfies F(X) = X, if a close-
formed solution is not achievable then we could try solving it by “successive approximation”.  It 
normally starts out with an initial approximation X0, substituting X0 into F(X) leads to the next trial 
value X1, then similarly the succeeding values X2, X3 … and finally Xn at completion of nth iteration.  
The proceeding went something like this:  
 

X1 = F(x0) 
X2 = F(x1) 
     . 
     . 
Xn = F(Xn-1) 

 
The important question is: at which ‘n’ does the resulting [Xn] converge to a prescribed precision 
threshold?  Or asking bluntly: would it ever converge (or become diverging instead)?  The answer 
could depend on many factors that can be looked up from literature on numerical analysis.   
 
Generally if a solution scheme can lead to convergence at all, the required number of trials, ‘n’, 
had something to do with: (1) how close the initial guess [X0] was to the true solution value and (2) 
how stringent the convergence criterion was set.   
 
But the main concern remains whether it would ever converge with any arbitrarily chosen [X0] as the 
initial trial value.  Besides that, sometimes the winning odds in successive approximation are vastly 
influenced by the function’s first derivative [F’(X)] and/or second derivative [F’’(X)].  Therefore 
one of the prerequisites for convergence for most common equations is that the mathematical 
function is differentiable. 
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Our convergence measure calls for a simple validation: [ΣA+FULL + ΣA+PART = ΣA / 2].  Apparently our 
biggest problem being that this mathematical expression is neither a continuous function nor is it 
differentiable.  However we could still solve it by “successive approximation” except with a minor 
”twist”.  Let us start out from these self-explanatory terms:  
 

ε = prescribed convergence tolerance 
Asum = ΣA+FULL + ΣA+PART  
Aideal = ΣA / 2  
Rerr = relative error ratio = |( Asum - Aideal) |/ Aideal 

 
Notice that [Aideal] is a constant.  Already its value is known before the EC was located.  Say, for 
bending about the X-axis, after a judiciously selection of:  
 

(a) initial [eyinit] to start the first iteration cycle, or  
(b) a newly calculated value of [eynext] (=[eyinit] + [eyincr]) prior to starting a brand new cycle, 

 
we would obtain the area sum [Asum] per “Segment Area Strategy” followed by the relative error 
ratio [Rerr].  Convergence is reached at the current cycle only when Rerr ≤  ε.  Otherwise a new value 
of [eyincr] for the subsequent iteration cycle can be estimated as: 
 

[eyincr] = fmod * [(ΣA+FULL + ΣA+PART – ΣA / 2) / Σ( A / ∆Yp )] 
 
This is the same expression for [eyincr] derived under the “Segment Area Strategy” except for the 
extra term [fmod] in front.  Intended for controlling the solution progress, [fmod] is a correction factor 
of real number, whose value is contingent on whether we wish to speed up or slow down the pace in 
reaching convergence.   
 
Locating the PC for any generic section (whether symmetrical or not) is nothing but playing with 
geometry.  To succeed we need to “play it right” at each and every iteration cycle, particularly with 
those segments “straddling an imaginary neutral axis”.   
 
At conclusion of each cycle, the predecessor [eyinit] or [eynext] would always lead to a succeeding 
[eyincr], whose value is determined by a fixed-formed algebraic formula.  In most applications, 
modifying the succeeding [eyincr] by a factor [fmod] may be unnecessary.  But there is something 
interesting in the numerical difference, or the physical gap (or jump), between the succeeding 
[eyincr] and the predecessor [eynext].   
 
We may visualize the positive (or negative) gap as if the “axis of interest” had jumped forward (or 
backward).  If the jump between consecutive cycles is relatively small then the respective 
“number” of segments participating in either [ΣA+FULL] or [ΣA+PART] would remain “unchanged”.  By 
such “perfect condition”, it had proven the truth to the assumption statement: “all the current 
A+FULL stays being FULL and all the current A+PART remains being PARTIAL”.  However this condition 
can become false if the gap created by the forward jumping is too excessive.   
 
How excessive can be measured as too excessive is another question.  But the fact is jumping 
forward too much can invariably add detrimental side effect to the succeeding [eyincr].  Here is why: 
instead of jumping further forward, we could be trapped into exactly the opposite by reversing its 
course mathematically in the subsequent cycle and end up jumping backward.  This could result 
into a situation that some of the predecessor “FULL” or “PARTIAL” segments would be “skipped 
over” due to this unwanted “numerical side effect”.  Apparently those segments being “skipped 
over” would no longer contribute properly in the summation terms, [ΣA+FULL] and/or [ΣA+PART], for 
the duration of the succeeding cycle.   
 
As the numerical back and forth (forward and reverse) compensation continues, it can result into a 
whole series of [eyincr] with elemental magnitudes alternating between values of its predecessor and 
successor.  Much like initially that both X1 and X2 are unique and moderately far apart (numerically), 
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but recursively we encounter X3 = X1, X4 = X2, X5 = X3 and X6 = X4, etc., rendering an iteration 
process never converges.  This situation could occur for:  
 

(1) section profiles with very unusual geometric segment setups and/or  
(2) formulation of [eyincr] dictated by the unique feature of problem at hand.   

 
One of the effective means to controlling convergence is through modification factor [fmod].  A 
generalized modification can be applied in whichever ways that suit to global and/or local term(s) 
by addition and/or multiplication.  To scale down the “jump” through multiplication in our 
situation, obviously [fmod] has to be less than 1.  An important point to make here is that a factor too 
close to 1 would still carry 
unwanted risk of too much 
gap between successive 
cycles whereas a factor 
too small would definitely 
chalk up the number of 
‘n’.   
 
The concern is not how 
rapid it would converge 
but to have assurance of 
a reasonable solution 
(always).  If we set it as 
the highest priority to 
minimize the chance of 
“not converging” then we 
should go for a smaller 
[fmod].  Striking a balance 
in between, we have set 
the fmod value to 0.5 in our 
example problem.   
 
Locating the Plastic 
Principal Axes  
 
Notice that some of the 
notations used in this 
article were slightly 
different from that 
appeared in the Calc.  
Now referring to Calc 
page 5 and page 6 on 
“iteration for Xp-axis 
bending”.  We started out 
with the most convenient 
value of eyinit = 0 at cycle 
#1 from that we obtained 
the next eyincr = 3.1902.  It 
gives an error ratio Rerr = 
0.1216, which obviously is not acceptable.   
 
Remember we made a statement: “In most applications, modifying the succeeding [eyincr] by a 
factor [fmod] may be unnecessary”.  To confirm if that is true, we applied eynext = 3.1902 without 
modification for the next cycle.  “Yes indeed” it does converge immediately (not shown in the hand 
Calc).   
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That should be a perfect 
ending for such an 
accurate resolution after 
only two tries without 
bothering with [fmod].  But 
we decided to carry on 
purposely with fmod = 0.5 
and observe what it takes 
if we only shoot for an 
acceptable error ratio 
somewhere below 0.1%.   
 
As shown on Calc page 6 
that continued from eynext 
= 1.5951 (= 0.5 * 3.1902) 
at cycle #2, immediately 
the Rerr dropped to 0.0304 
or at 3% error.  As 
expected at cycle #5, the 
Rerr reduced further to 
0.0076 giving next eynext = 
3.0904 that is fairly close 
to ey_solution = 3.1902 
already.  Finally we 
carried on up to cycle #8 
and arrived at eynext = 
3.1777 with an error ratio 
Rerr = 0.00095, which is 
trivial enough to stop 
further trials.   
 
Similarly we initiated the 
“iteration for Yp-axis 
bending” from exinit = 0 
and arrive at exnext ≈ -0.49 
after 6 cycles with an 
error ratio Rerr = 0.0102 
(see Calc page 7). 
 
Obviously the number of 
iterations required for Xp-axis bending and that for Yp-axis bending could be the same or different 
(as our example showed).  Other than that it is really our call when to quit the process by reviewing 
the error ratio [Rerr] against  a prescribed threshold.  Here we had just proven a few specifics 
regarding the required number of trials, ‘n’:  
 

(1) it may be highly dependent on what fmod is and how it fits in the formulation 
(2) it decreases when enext is set closer to esolution   
(3) it increases if we set the prescribed convergence tolerance too small.     

 
The generic strategy used in our example can be summarized into these major steps:  
 

(1) start from [einit] = 0 at cycle #1 and obtain [eincr].  Stop process if converging otherwise 
continue to step (2) 

(2) without modification (by letting [fmod] = 1), try [enext] as full value of [eincr] at cycle #2.  
Stop if converging otherwise continue to step (3) 

(3) Try [enext] = [eprevious] + 0.5 * [eyincr] for all the subsequent cycles until converging.  But that 
may or may not be the most favorable setup yet.  In some occasions using the “interval 
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halving method” with [enext] = 0.5 * ([eprevious] + [eyincr]) may work better for certain profile 
geometry. 

 
Plastic Section Modulus 
 
PSM, by definition, is the summation of aggregate “static moments of area” applied to all the 
participating components about the respective PPA.  The engineering term “Static moment of area” 
(SMA) is synonym to “Static Moment”, “First Moment of Area” or simply the “First Moment”.  Even 
though the SMA’s mathematic formulation for PSM is similar to that for the SMA involved in 
calculating the flexural horizontal shear stress (HS), but they are different in several ways:  
 
(a) PSM is a unique constant for the entire profile.  It is an overall sum of SMA from all the 

components in a profile while SMAs for HS vary from node to node and is calculated as the 
accumulation (numerical integration) of SMA from a terminal node up to the local point of 
interest,  

 
(b) PSM is a pure scalar that takes no notice of the (+/-) sign carried by the coordinates in 

whichever quadrant while SMA for HS, in a way a nodal vector representing qualitatively the 
flexural shear flow, demands the otherwise.  

 
Symbols [Zx] and [Zy] are normally assigned to correspond with PSM for bending about the PPA [Xp] 
and [Yp] axes.   
 

With reference to Xp-axis bending: before starting the [Zx] calculation, it is essential to declare an 
initial condition: Zx = 0.  The pseudo codes, for a typical segment, would work something like this:  

  
Let the “full area” of the current segment = A 
Retrieve coordinates Ypf and Ypt (by coordinate transformation based on offset ey_final) 
Let ∆Y = |Ypf - Ypt| 
 
Start evaluating coordinate Ypf  

 
Ypf  < 0 

If only Ypt > 0 then 
Zx = Zx + 0.5 * (Ypt

2 + Ypf
2 ) * (A / ∆Y) 

 
Otherwise 
Zx = Zx – 0.5 * A / (Ypf + Ypt) 
 

Ypf  = 0 
If only Ypt > 0 then 
Zx = Zx + 0.5 * A * Ypt 
 
If only Ypt = 0 then 
Zx = Zx + 0.25 * A 2 / ∆Y 
 
If only Ypt < 0 then 
Zx = Zx - 0.5 * A * Ypt 
 

Ypf  > 0   
If only Ypt >= 0 then 
Zx = Zx + 0.5 * A * (Ypf + Ypt)  
 
If only Ypt < 0 then 
Zx = Zx + 0.5 * (Ypt

2 + Ypf
2 ) * (A / ∆Y) 

 
End of Ypf evaluation  
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The final sum of PSM Zx is realized after applying the [Ypf] evaluation for each and every segment.  
As an exercise, the pseudo codes for PSM Zy bending about the Yp-axis could also be derived using 
similar coding strategy.   
 
Now we are ready to calculate the PSMs after finalizing the PPA axis offsets from the EPA (ex_final = 
3.19 and ey_final = -0.4979).  Calc pages 8 and 9 summarize the process of how Zx and Zy were 
calculated for our example problem.   
 

Shape Factors 

“Form factor” is a term appears akin to “Shape factor”.  But they are nothing like each other, at 
least in the engineering mechanics relevance.  Both terms have diverse meaning in diverse genres of 
application.  Depending on what it refers to, even “Form factor” can be significantly different in 
material stress–related subjects.  However “Form factor” is not our concern here for it has nothing 
to do with “Plastic Center” or “Plastic Section Modulus”.  We point it out to preclude any 
misunderstanding if there is.   

Let us now concentrate on the Shape Factor (SF).  For bending about either the strong axis or the 
weak axis, if we let My = yield moment and Mp = plastic moment, then SF is known as Mp / My.  By 
simple arithmetic, it deduces to the ratio of PSM / ESM where PSM is based on [Xp] and [Yp] per PPS 
while ESM is rooted from [X’] and [Y’] per EPS.   

Numerical treatment specific to SF requires the smallest value of ESM.  They were evaluated for 
either axis of bending at the extreme fibers or at nodes located furthest away from the EC (along 
both positive and negative senses).   

Referring back from Calc page 3 for X’-bending, we would look for the maximum value: [Y’max] and 
the minimum value: [Y’min] under the Yi’ and Yj’ columns.  Likewise for Y’-bending, we would find 
the maximum value: [X’max] and the minimum value: [X’min] under the Xi’ and Xj’ columns, 
respectively. 

Calculation of ESM at any nodal point requires gross principal moments of inertia [ΣI’xx] and [ΣI’yy] 
formulated as: 

ΣI’xx = 0.5 * (ΣIxx + ΣIyy) + [ 0.25 * (ΣIxx - ΣIyy)
2 + ΣIxy

2] 

ΣI’yy = 0.5 * (ΣIxx + ΣIyy) - [ 0.25 * (ΣIxx - ΣIyy)
2 + ΣIxy

2]   

Also refer to Calc pages 9 and 10, it follows that the minimum and maximum ESM for bending about 
both axes are:  

{ESMx_min , ESMx_max} = {ΣI’xx / Y’max , ΣI’xx / Y’min } 

{ESMy_min , ESMy_max} = {ΣI’yy / X’max , ΣI’yy / X’min} 

Finally the shape factors, for the strong axis and weak axis bending, [SFx] and [SFx]: 

SFx = {Zx / ESMx_min , Zx / ESMx_max} = {1.29, 1.0} 

SFy = {Zy / ESMy_min , Zy / ESMy_max} = {1.866, 1.49} 

For bending about each respective axis, we calculated two SFs based on the extreme fiber located 
in both the positive and negative quadrants.  One of the values represents yielding in tension and 
the other represents yielding under compression.   

Except for very short and stubby members, in normal practices compression is almost always much 
more critical.  All because, prior to general yielding, buckling can be triggered at a much lower 
stress level due to material or construction imperfections, load eccentricity, lack of support for 
compression fiber against lateral movements or excessive slenderness in either global and/or local 



Plastic Section Modulus of Sections with Arbitrary Profile Geometry                           Structural Design Corp                            Page 22 of 22 

element, and so on.  In addition, for profile sections subjected to generalized loading/force 
resulting from all six degrees of freedom, local buckling due to compressive fiber stress can be set 
off not only by bending stress, but also with combination from warping normal stress.  That is why 
compression should always be treated with extra care. 

For thin-walled sections, evaluating the global implication from shape factors is as important as 
checking for local buckling per component compact criteria.  In our example problem for Y’-axis 
bending, the smaller 1.49 SFy value can be interpreted as the Plastic Moment strength [Mpy] that 
bent about the principal weak axis is at about 49% greater than the Yield Moment strength [Myy].  In 
other words it would take that much more beyond yielding for the section to become plastified from 
weak axis bending.  But on the other hand there could be a problem pertaining bending about the 
strong principal axis because the smaller 1.0 SFx clearly indicated that soon after the extreme fiber 
reaches yield, the entire section could go into plastification immediately with very little (or no) 
margin left in between under the worst-case scenario.  Therefore on the safe side we should always 
pay attention to whichever the smaller value that governs.   

Conclusion 

For our example profile, if the iteration process for either axis of bending takes only three (3) cycles 
to locate the PC and then calculate the PSM, we could probably have to deal with 1000+ numeric 
entries plus mathematical operators, parentheses and sign change keys, etc.  Number crunching in 
successive approximation and meeting convergence criteria are quite different from plugging values 
to simple formulas involving limited number of parameters or constants.  What is against us the 
most in this case should be the numerical errors accumulated from rounding and truncation.  Even 
by punching the same number of digits (with double precisions) the same way into different tools 
(whether calculators, spreadsheets or database tables/queries), we should not anticipate to 
reproduce identical results from one Calc to the other.   

Anyhow it should be much easier to go through the actual Calc than following the tedious narrative 
given in the article.  But are we done yet?  The answer may be “Yes” or “No” depending on what 
the application is for.   

Keep in mind that the algorithm is only an approximation for PSM of thin-walled sections.  
Although the strategy presented here were verified extensively and it worked for many profile cases 
but there is no guarantee that it’s bug free.  For that our answer is “yes we are done” (or uhm may 
be). 

The purpose of the pseudo code listings is only to delineate all the practical scenarios through 
logical branching statement blocks.  However no algorithm is ever complete and free from further 
enhancement.  If we opt to try this on thick-walled sections then by all means our answer would be 
“No, we are not done”.  For that the algorithm must be expanded in greater details especially in 
handling a few more special conditions, among them: (1) how to handle inaccuracy resulting from 
overlapping of area at joints where multiple segments meet due to generic inadequacy from 
simplified skeleton middle line model, (2) probable non-convergence due to unusual arrangement of 
segments for some unusually-shaped profile and (3) what happens when Xpf = Xpt ≠ 0 and Ypf = Ypt ≠ 0.  
(more fun for another interesting homework problem.)  


